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CONSPECTUS: This Account describes the use of molecular
dynamics (MD) simulations to reveal how mutations alter the
structure and organization of enzyme active sites. As proposed by
Pauling about 70 years ago and elaborated by many others since
then, biocatalysis is efficient when functional groups in the active
site of an enzyme are in optimal positions for transition state
stabilization. Changes in mechanism and covalent interactions are
often critical parts of enzyme catalysis. We describe our
explorations of the dynamical preorganization of active sites
using MD, studying the fluctuations between active and inactive
conformations normally concealed to static crystallography. MD
shows how the various arrangements of active site residues
influence the free energy of the transition state and relates the populations of the catalytic conformational ensemble to the
enzyme activity. This Account is organized around three case studies from our laboratory. We first describe the importance of
dynamics in evaluating a series of computationally designed and experimentally evolved enzymes for the Kemp elimination, a
popular subject in the enzyme design field. We find that the dynamics of the active site is influenced not only by the original
sequence design and subsequent mutations but also by the nature of the ligand present in the active site. In the second example,
we show how microsecond MD has been used to uncover the role of remote mutations in the active site dynamics and catalysis
of a transesterase, LovD. This enzyme was evolved by Tang at UCLA and Codexis, Inc., and is a useful commercial catalyst for
the production of the drug simvastatin. X-ray analysis of inactive and active mutants did not reveal differences in the active sites,
but relatively long time scale MD in solution showed that the active site of the wild-type enzyme preorganizes only upon binding
of the acyl carrier protein (ACP) that delivers the natural acyl group to the active site. In the absence of bound ACP, a
noncatalytic arrangement of the catalytic triad is dominant. Unnatural truncated substrates are inactive because of the lack of
protein−protein interactions provided by the ACP. Directed evolution is able to gradually restore the catalytic organization of the
active site by motion of the protein backbone that alters the active site geometry. In the third case, we demonstrate the key role
of MD in combination with crystallography to identify the origins of substrate-dependent stereoselectivities in a number of
Codexis-engineered ketoreductases, one of which is used commercially for the production of the antibiotic sulopenem. Here,
mutations alter the shape of the active site as well as the accessibility of water to different regions of it. Each of these examples
reveals something different about how mutations can influence enzyme activity and shows that directed evolution, like natural
evolution, can increase catalytic activity in a variety of remarkable and often subtle ways.

1. INTRODUCTION

Understanding the enormous catalytic power of enzymes is a
grand challenge for chemical biology. In the past decade, our
group has collaborated with biologists and computational groups
to design new enzymes with functions different from those
evolved by natural enzymes.1 Our successes in enzyme design
showed that we understand which catalytic groups will accelerate
the rates of reactions and that quantum-mechanical (QM)
calculations predict the correct positioning of these groups.2 We
also have the computational tools, such as Baker’s Rosetta or
Mayo’s Phoenix, to incorporate these groups into well-
characterized stable protein scaffolds.3

In spite of these successes, our understanding is not sufficient

to rationally tune the global architecture of the protein that

ultimately determines catalysis in order to achieve efficiencies

rivaling those of naturally evolved proteins. Instead, experimental

directed evolution (DE) is often used to achieve several orders of

magnitude of acceleration beyond that achieved by the designed

protein.4 Furthermore, many designs fail altogether. Even in

successful cases, most of the designs are not active. We need to
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develop additional computational tools that provide significant
acceleration and selectivity.
The goal of our recent research is to learn how to substitute, at

least in part, computational design for these costly DE
experiments. To do this, we first need to know much more
about how mutations that do not modify the catalytic groups
nevertheless influence the catalytic activity to a large extent.5−8

Mutagenesis can alter not only the shape but also the flexibility of
the active site. These dynamic consequences have important
effects on catalysis that are often concealed to structural
techniques like X-ray crystallography.
All molecules possess potential and kinetic energy and thus are

in constant motion, each atom moving as much as 1 Å in 10−14 s.
MD uses classical Newtonian mechanics to determine how all of
the atoms in a system move as a result of forces acting on the
atoms. Since there are thousands of atoms in a protein and the
associated solvent molecules and ions, parametrized force fields
such as AMBER9 are used to efficiently calculate the forces on
each atom that determine their movement. The forces change
every time the atoms move, and they must be recalculated after
very brief time steps (less than 5 fs). Millions or even billions of
calculations are necessary to describe motions happening at short
times such as nanoseconds or microseconds. These studies have
beenmademore efficient by technological breakthroughs such us
graphics processing unit (GPU)-based computing10 and special-
purpose machines such as the Anton Supercomputer,11 both of
which were used in the work described herein.
In chemistry, dynamics describes the motions of atoms,

molecules, and even condensed media.12 These dynamical
fluctuations take place on a wide range of time scales (Figure
1).13,14 Many time scales like this have been published,13,14 and

we show our own version here. These motions include bond
vibrations (10−100 fs), side-chain rotations (ps to μs), local
domain fluctuations (ns to ms), allosteric transitions (μs to s),
and the overall folding of the structural motifs of proteins (μs to
s). Each of these motions either precedes or accompanies
chemical reactions.
Chemical dynamics involves studies of rates and mechanisms

of reactions at the molecular level, generally in a time-resolved
fashion.12 Molecular dynamicists, including our group, have
studied the dynamics of simple reactions in the gas phase and in
solution.12,15,16 The time scales of processes involved in chemical
reactions are represented in Figure 2. The time it takes to make
or break bonds in a reaction (50−100 fs) is the same as that of
most molecular vibrations. The quantity kBT/h (∼50 fs) is the
pre-exponential factor in Eyring’s transition state theory

equation17 and represents the highest possible rate at which a
reaction with no free energy barrier can occur. Other quantities
of interest for catalytic reactions are the time for association of
substrates to catalysts and the dissociation of catalyst−product
complexes. Diffusion limits how fast the association of substrate
and enzyme can occur in a condensed phase. Diffusion in water
occurs with a bimolecular rate constant of ∼109 M−1 s−1. This
translates to association periods of 1 s to 10−3 s when the enzyme
concentration is micromolar and the substrate concentration is
millimolar to 1 M.18 Other time scales emphasizing uncatalyzed
reactions have been published.19 Dissociation usually occurs in
10−5 to 10−2 s. The overall time scale of enzyme-catalyzed
reactions is quite broad (1 to 10−8 s on the basis of measured kcat
values).
As discussed in many Accounts in this Special Issue, the time

scale for bond breaking and formation (tens of fs) is much
shorter than the time scales of collisions with the protein or
solvent or of intramolecular vibrational relaxation. Vibrations of
the substrate and the active site are indeed necessary to acquire
the energy necessary to surmount a potential energy barrier,12

but this vibrational energy transfer occurs much more slowly
than the bond changing events.14,19−21 Nevertheless, preorgani-
zation of active sites is crucial for catalysis, and dynamic motions
determine the probability that the active site will be appropriately
positioned to stabilize the bond-changing events in reac-
tions.22−25 These aspects of catalysis and dynamics are the
focus of this Account. In addition, protein conformational
changes26 andmotions involvingmobile loops can act as gates for
substrate access or product release27 from the active site, but we
have not studied these.
Much of this Account involves MD simulations aimed at

understanding how remote (or at least noncatalytic) mutations
influence catalysis. DE involves multiple rounds of evolution
followed by screening to accumulate beneficial mutations, which
are often scattered around the whole enzyme.4 Important
contributions to this field have been reported recently by
Codexis, Inc.28,29 and the Hilvert,30 Mayo,31 Tawfik,32,33 and
Arnold34−36 laboratories. One of the goals of our research is to
understand how mutations of amino acids not directly involved
in catalysis nevertheless influence the activity and to build this
knowledge into the enzyme design procedure.

2. MD EVALUATION OF DESIGNED ENZYMES FOR THE
KEMP ELIMINATION

The “inside-out” enzyme design protocol1 that our group
developed with the Baker lab involves testing the stability of the
protein active sites designed through our quantum-mechanical
theozyme, match, and Rosetta design strategy and their ability to
bind the substrate. These tests involve short MD simulations to
screen out poor designs. This was used extensively to evaluate
Kemp eliminases7 that were designed by Rosetta.7,31,33 The
Kemp elimination is shown in Figure 3a. MD simulations
revealed that unsuccessful computational designs failed to
maintain key catalytic hydrogen bonds (Figure 3b). Besides
filtering out inactive designs, the time-dependent behavior of the
catalytic active site residues was used to guide directed
evolution.31,32

In a subsequent study,6 we performed longer MD simulations
(100 ns) using ligands resembling the transition state (TS) to
different extents (Figure 4a,b), and a broader range of protein
folds (Figure 4c−e). The modestly active enzymes KE70 and
KE59 were designed through QM calculations in our group and
Rosetta in Baker’s lab37 and then evolved experimentally by

Figure 1. Time scales of different types of protein motions.
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Tawfik.32,33 These designs feature a His-Asp dyad (KE59) or Glu
(KE70) as the general base (“B” in Figure 3a) and Ser as a
hydrogen-bond donor (“HB” in Figure 3a; also see Figures 5a
and 6a). The available X-ray structures of KE70 variants bound to
different substrates and TS analogues indicated a broad
distribution of catalytic contacts and often an unproductive

disposition of the substrate with respect to the catalytic residues
(Figure 5b). After DE, both enzymes experienced similar
improvements of around 400-fold in catalytic efficiency (kcat/
KM).
The more proficient enzyme HG3 was first designed by our

group and Mayo31 and was subsequently evolved experimentally
by Hilvert, who achieved a 181-fold increase in catalytic
activity.38 It features an Asp and originally a Lys (afterward
mutated to His and finally to Gln) as the general base and the
hydrogen-bond donor, respectively. A very preorganized active
site close to the original computational design was characterized
crystallographically in the final mutant.
The less active, unevolved enzymes KE70 and KE59 showed

adequate active site−ligand contacts with the actual substrate,
benzisoxazole 1, in the MD simulations (Figures 5c and 6c);
surprisingly, the evolved, most active mutants exhibited worse
substrate binding due to migration to either the water solution or
secondary binding sites not observed in the crystallographic
structures. However, with the more polarized, TS-like benzo-
triazole 2 as a substrate, the trend was reversed (Figures 5d and
6d). Here, after the second round of DE, the ligand maintained a
proper orientation in the active site of KE70, and the catalytic

Figure 2. Time scales of events related to reactions.

Figure 3. (a) The Kemp elimination. (b) Active site preorganization
analyzed for all active and inactive variants by monitoring the H-bond
distance (d) and angle (θ) of the catalytic His-Glu dyad along 20 ns MD
trajectories. Green circles denote active designs and red circles inactive
ones. The star indicates the theozyme values of d and θ.

Figure 4. Structures of (a) 5-nitrobenzisoxazole (1), the experimental
substrate; (b) 6-nitrobenzotriazole (2), a frequently cocrystallized
inhibitor; and (c−e) the three different Kemp eliminases studied
through MD simulations: (c) KE70, (d) KE59, and (e) HG3.

Figure 5. (a) DFT theozyme optimized for KE70 enzymes.33 (b)Overlay
of the active site structures of the crystallized KE70.5 (fifth round of DE)
and KE70.6 (sixth round) mutants (in sticks) and the theozyme structure
(in balls and sticks). (c, d) MD traces of the distances between the
reactive N atom of His17 and (c) the C atom of benzisoxazole 1 and (d)
the N atom of benzotriazole 2 for selected KE70 mutants.
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contacts overall got closer to the optimal calculated values
(Figure 5d).
With HG3 enzymes, simulations with the reacting substrate 1

were again not consistent with the theozyme-fidelity paradigm
(Figure 7a): the two most active mutants, HG3.14 and HG3.17,

showed worse substrate binding than the less evolved variants,
which displayed a more ordered arrangement of the substrate
and the catalytic residues. Again, when the more polarized,
cocrystallized benzotriazole 2 was used, the most active mutants
maintained the best catalytic contacts (Figure 7b): the catalytic
distance between the substrate N−H bond (a polarized mimic of
the reactive C−H bond) and Asp127 was very distorted (∼10 Å)
in the first variant as a result of substrate translocation but was
restored along the DE pathway from HG3 to HG3.17 by
decreasing the population of the unproductive binding modes. In
the seventh round of DE, the catalytic distance stayed constant at
the optimal value observed in the X-ray structure of the final
mutant and in the computed theozyme (2.5 Å; see Figure 8a,b).
These results agree with Hilvert and Mayo’s definition of

precision38 and Warshel’s preorganization,22,23 which is recog-
nized as a requirement for enhanced catalysis.

The MD trajectories performed for multiple designs and
evolved variants of enzymes for the Kemp elimination indicated
that the geometric similarity to the computed theozymes could
only be achieved in the ground state using polarized substrates
that mimic the charge distribution in the TS. These observations
are fully consistent with the fact that the designs are made to
provide maximum stabilization of the polar transition state and
not the nonpolar reactant. MD shows very clearly that the active
site is dynamic and assembles very tightly around the polar
transition state but not around the reactant. The systematic study
of different protein scaffolds and substrates by MD simulations
has determined how the average structure of active sites can
change significantly upon binding of the substrate or TS with
respect to the apo state; these conformational changes usually
take tens or hundreds of nanoseconds and are very often
undetectable by crystallography. Evolution gradually populates
the catalytically competent arrangements of inherently flexible
active sites. In view of these results, we propose that the
systematic evaluation of the conformational flexibility/rigidity of
designed active sites through MD simulations, using polarized
TSmodels, will aid in the design of more preorganized and active
enzymes.

3. MD ANALYSIS OF THE ROLE OF REMOTE
MUTATIONS IN LOVD ACTIVE SITE DYNAMICS

LovD from Aspergillus terreus converts monacolin J acid (MJA)
into the cholesterol-lowering drug lovastatin (LVA, acid form)
via acylation of the α-S-methylbutyrate side chain (Figure 9). In
the natural pathway, LovD interacts with the acyl carrier protein
(ACP) domain of its binding partner protein LovF. In this
process, LovF acylates Ser76 of LovD following a ping-pong
mechanism39 to deliver the α-S-methylbutyrate side chain. The
latter is then transferred to MJA (Figure 9). The acylation−
deacylation reactions are assisted by the catalytic residues Tyr188
and Lys79 (Figures 10 and 11a). Simvastatin (SVA, acid form),
the active pharmaceutical ingredient in Zocor, differs from LVA
by one methyl group.40 However, the wild-type LovD enzyme

Figure 6. (a) DFT theozyme optimized for KE59 enzymes.32 (b)Overlay
of the active site structures of the crystallized KE59.1 (first round of DE)
and KE59.13 (13th round) mutants (in sticks) and the theozyme
structure (in balls and sticks). (c, d) MD traces of the distances between
the reactive O atom of Glu230 and (c) the C atom of benzoisoxazole 1
and (d) the N atom of benzotriazole 2 for selected KE59 mutants.

Figure 7. Evolution of the distances between the reactive O atom of
Asp127 and (a) the C atom of benzoisoxazole 1 and (b) the N atom of
benzotriazole 2 along the MD simulations for all of the HG3 mutants:
the original design (HG3, in blue), two intermediate DE mutants (the
third HG3.3b and seventh HG3.7, in teal and violet, respectively), the
14th-DE-round mutant (HG3.14, in orange), and finally the most
evolved variant (HG3.17, in magenta).

Figure 8. (a, b) DFT theozymes with Asp as the base and (a) Lys or (b)
Gln as hydrogen-bond donors, optimized for HG3 enzymes. (c, d)
Overlays of the theozyme structure (in balls and sticks) with the X-ray
structures (in sticks) of the (c) computationally designedHG1 andHG2
enzymes31 and (d) the final evolved HG3.17 variant.38
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exhibits poor activity toward non-natural truncated acyl donors.
Nine rounds of DE generated LovD9, which now accepts a small
free acyl thioester without requiring the ACP domain of LovF.5,40

LovD9 is 1000-fold more efficient than wild-type LovD in the
synthesis of simvastatin and presents 31 beneficial mutations,

most of them located outside the active site.5 The X-ray
structures of several mutants with different activities toward SVA
showed an almost identical catalytically competent arrangement
of the active site, especially for the catalytic Ser76-Tyr188-Lys79
residues (Figures 10 and 11b). Similarly, <100 ns MD
simulations did not provide an explanation of the observed
activities. In contrast, microsecondMD simulations performed in
ANTON11 provided remarkable insights for the improvement of
the catalytic proficiency of the laboratory-generated variants
along the directed evolution pathway.
The ∼1.5 μs MD simulations performed on the apo

monomeric structures showed that along the DE pathway, the
catalytically competent arrangement of residues Ser76, Tyr188,
and Lys79 predicted by QM calculations (Figure 11a) was
progressively stabilized (Figure 12). This ideal arrangement

Figure 9. (A) Natural and (B) engineered biosynthetic pathways of LovD.

Figure 10. X-ray structure of wild-type LovD (dimer) and
representative snapshots from the MD simulations of LovD monomer,
the LovD−ACP complex, and the final mutant LovD9 in solution. The
insets show zoomed-in views of the active site, and the catalytically
(in)competent arrangement(s) of the Ser76-Tyr188-Lys79 triad are
represented with cartoon triangles.

Figure 11. (a) DFT-optimized catalytic Ser76-Lys79-Tyr188 triad. (b)
Overlay of the X-ray structures of wild-type LovD (yellow), LovD6
(cyan), and LovD9 (green). (c, d) DFT structures of (c) all of the
stationary points along the transacylation reaction pathway and (d) the
rate-determining TS for Ser76 acylation.
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calculated for the catalytic triad in the unbound state was similar
to the TS geometry of the rate-determining step of the process
(Figure 11d). It is noteworthy that the time scales of the
conformational changes leading to unproductive arrangements
of the catalytic triad were around 300 and 850 ns for the first
variant, LovD1, and the third variant, LovD3; in the highly
evolved LovD6 and LovD9 mutants, the ideal catalytic triad was
maintained the whole simulation time. These progressively
slower motions translated into increasingly larger populations of
the productive conformation (30%, 56%, and 100% for LovD1,
LovD3, and the final LovD6 and LovD9 mutants, respectively).
Such a conformer distribution correlates well with the observed
enzymatic activities (Figure 12d), with the exception of the 6-fold
increase from LovD6 to LovD9. As a consequence of the remote
mutations introduced during the DE pathway, the optimal QM
geometry was sampled with increasing frequency; this was an
indication that the free energy of the catalytically active
conformation was lowered gradually along the DE process.
MD simulations performed on the wild-type dimer crystal

structure and on a model of the complex formed between LovD
and the LovF acyl carrier domain demonstrated that protein−
protein interactions stabilize the productive arrangement of the
catalytic residues (see LovD and LovD-ACP in Figure 12a).
These results indicated that the introduction of mutations via
directed evolution freed LovD activity from the natural
dependence on protein−protein interactions. As a result, LovD
was engineered to function without the allosteric modulation
exerted by LovF.
As noted earlier, enzyme active site preorganization plays an

important role in the acceleration of enzyme-catalyzed
reactions.22,23 Indeed, overlays of X-ray structures of esterases
belonging to different folds evidence very similar dispositions of
their catalytic residues; it is known that natural unrelated
enzymes with similar activities present similarly arranged
catalytic machineries.41 As observed in the previous section,
the importance of precision in biocatalysis has recently been
demonstrated for the single step unimolecular Kemp elimi-

nation.38 LovD catalyzes multistep acylation−deacylation
reactions; the acyl group is first transferred to Ser76 of LovD
in a concerted, rate-limiting, and nearly thermoneutral process
(Figure 11d). The subsequent acyl group transfer to MJA occurs
via a stepwise mechanism, where a tetrahedral intermediate is
formed. Microsecond MD simulations were combined with QM
calculations to determine the active site structure and dynamics
at different reaction stages.5 The catalytic machinery of LovDwas
found to be precisely positioned to efficiently stabilize all of the
transition states and intermediates involved in the acylation−
deacylation process with minimal rearrangement (Figure 11c).
Microsecond MD simulations, in contrast to crystallography

and short nanosecond MD, are capable of elucidating the
catalytic proficiency of the DE-engineered LovD variants. These
simulations reveal that distal mutations have direct consequences
for the enzyme active site geometry. Directed evolution includes
remote mutations that induce conformational changes trans-
mitted throughout the protein backbone, which stabilize the
catalytically competent arrangement of the active site residues.
These observations demonstrate that future enzyme design
protocols will need to incorporate sub- or microsecond-scaleMD
simulations to accurately evaluate the computational predictions,
but more importantly, mutations not strictly located at the
enzyme active site will need to be predicted and incorporated for
enhanced enzymatic activity.

4. MD AIDS CRYSTALLOGRAPHY TO LOCATE THE
ORIGINS OF DIVERGENT STEREOSELECTIVITY IN
ENGINEERED KETOREDUCTASES

Ketoreductases (KREDs) catalyze the asymmetric reduction of
ketones to alcohols, as shown in Figure 13a. These enzymes have

been engineered to reduce a wide variety of substrates and are the
most commonly used enzymes in industrial pharmaceutical
synthesis.42 Codexis evolved an enzyme for the synthesis of
sulopenem,28 a potent antibiotic whose structure is shown in
Figure 13b. The exclusive formation of (R)-thiacyclopentanol
was achieved by eight rounds of directed evolution starting from
the wild-type ketoreductase from Lactobacillus kefir, which gives
63% enantiomeric excess (ee) of the R enantiomer, to the final
deca mutant (G7S/A94T/S96P/R108H/G117S/E145S/
N157T/P194N/M206Q/I223 V) Sph, which achieves 99.3%
ee of the same R enantiomer.28 During evolution, the single
mutation E145S largely increased the R selectivity from 63% to
95% ee. The (R)-alcohol is converted to the final (S)-thioether
configuration later in the synthesis.

Figure 12. (a) Evolution of the O(Tyr188)−N(Lys79) distance along
the MD simulations of all DE-engineered LovD mutants. (b, c)
Representative snapshots of (b) wild-type LovD and (c) the final LovD9
mutant. (d) Correlation between the populations of the triad in
catalytically competent conformations and the catalytic activities of the
mutants. (e) LovD−ACP(LovF) complex.

Figure 13. (a) KRED catalytic cycle using isopropanol to regenerate
NADPH. (b) 3-Thiacyclopentanone is incorporated into sulopenem.
(c) The substrates 3-oxa- and 3-thiacyclopentanone.
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MD simulations, combined with crystallography, and further
kinetic data provided an explanation of the observed selectivity,
which requires the enzyme to distinguish between sulfur or
oxygen and a methylene group, a truly impressive type of
selectivity.8 Figure 14 shows the percent enantiomeric excesses

achieved for the reductions of 3-oxacyclopentanone and 3-
thiacyclopentanone (Figures 13c and 15b) to their respective
alcohols by evolved KRED variants.

Kinetics studies showed that the wild-type and mutant
enzymes bind the substrates very weakly. In fact, the binding is
so weak that accurate KM measurements could not be obtained.8

The poor binding is due in part to the lack of enough polar
groups on the substrates and also to the highly dynamic character
of the substrate-binding loop (residues 190−210, the purple/
cyan region in Figure 16a), which covers the otherwise solvent-

exposed active site.43,44 When MD simulations on the wild-type
and the evolved KREDs are performed, the substrate-binding
loop opens, and the substrate often moves away from the active
site.
Unconstrained MD simulations were performed on selected

variants as tetramers, with the cofactor (NADPH) bound to the
four active sites and the substrate docked into one of them. These
simulations predict the shape and water accessibility of the active
site, modulated by the conformational states of the enzyme; these
states can be classified according to whether the loop is open,
closed, or in an intermediate conformation (see the representa-
tive snapshots in Figure 16a and the distributions of characteristic
distances in Figure 16b).
The enantioselectivity of the reduction reaction is determined

by the relative stabilities of the diastereomeric transition states in
the enzyme. To evaluate this, a theozyme in which the cofactor
and catalytic residues were abbreviated was quantum-mechan-
ically calculated. The theozyme is shown in Figure 17a. In the
theozyme, the side chains of a serine and tyrosine stabilize the
oxyanion formed upon hydride transfer from NADPH. The
tyrosine is also hydrogen-bonded to the sugar in the cofactor,
which also has a hydrogen bond to a protonated lysine. The
geometry and charge distribution of the theozyme were used to
build the substrate−cofactor transition state complexes, an
example of which is shown in Figure 17c. These complexes were
docked into the active site of the protein, and the protein with the
substrate−cofactor transition state complexes served as the
starting structures for theMD simulations. In the simulations, the
distance between the reactive C atom of the ketone and the H
atom of the NADPH and the dihedral angle defining the Re or Si
approach to the ketone were constrained for each of the two
diastereomeric theozymes. This strategy allowed the rest of the
catalytic contacts to fluctuate in response to the protein motions
but prevented stereochemical scrambling during the simulations.
The catalytic distances were monitored during the MD

simulation. These distances include those from the side-chain
oxygen atoms of Tyr156 and Ser143 to the carbonyl oxyanion
partially formed in the substrate and also those from the oxygen
of the 2′ carbon of NADPH ribose to the side-chain oxygen and
nitrogen of Tyr156 and Lys160, respectively (see Figure 17a).
These contacts were assumed to facilitate catalysis when less than
3.4 Å (less than the sum of the van der Waals radii of two
interacting C atoms). Catalytically competent conformations in
the MD simulations were defined as having all four contacts
simultaneously below this threshold. The fraction of catalytically
competent conformations of transition states for (R)- and (S)-
alcohol formation was computed and compared with the

Figure 14. Experimental percent enantiomeric excess (ee) obtained for
3-oxacyclopentanol and 3-thiacyclopentanol by evolved KRED variants.
Positive and negative percent ee values indicate excesses of the S and R
enantiomers, respectively. Each point in the graph corresponds to a
KRED variant plotted according to the enantioselectivity achieved for
each alcohol. The data for the wild-type (WT), E145S, and A94F
mutants are circled.

Figure 15. (a) Crystallographic active site in the apo state of wild-type
KRED with docked acetophenone (in yellow spheres). The catalytic
triad (Ser143, Tyr156, and Lys160) are shown in green, the residues
along the small binding pocket in pink, the residues along the large
binding pocket in blue, and Ile93, Ala94, and Ser96, which are part of the
large binding pocket, in cyan. (b) Electrostatic potential surfaces of 3-
oxa- and 3-thiacyclopentanone, where red is negative and blue is positive
(isosurface value of±0.044 hartree), calculated at the B3LYP/3-31G(d)
level.

Figure 16. (a) Open (cyan) and closed (purple) conformations of the
KRED substrate-binding loop. The Cα atoms of residues Ile93, Ala94,
Ser96, Leu195, and Leu199 are shown as spheres. (b) Distributions of
distances between Cα atoms of interacting residues derived from 2900
ns MD simulations of wild-type KRED. The X-ray distance (ca. 7 Å) is
marked with a vertical line.
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experimental enantiomeric excess (Figure 18). A conformation
of low occurrence in the simulation corresponds to a state with
high free energy, whereas a highly sampled conformation
possesses a low free energy.

The probability that the enzyme maintains the catalytic
contacts to each diastereomeric transition state was found to
correlate roughly with the experimental enantiomeric excess.
The model predicted the sign of the ee, although the degree of
selectivity was not predicted well. The ee values for the highly
selective variants (i.e., A94F with oxacyclopentanone, E145S
with thiacyclopentanone) were predicted best. These results
were used to analyze what types of active site environments favor
pro-R or pro-S reductions for each of the substrates.
Themutations to L. kefirmodulate the stereoselectivity toward

3-oxa- and 3-thiacyclopentanone. These studies highlight several
ways to control enantioselectivity, by creating new hydrophobic
contacts or by blocking or allowing water in the active site.
Because the relative stabilities of the enzymatic transition states
for the formation of the (R)- and (S)-alcohols determine the
selectivity, we developed a novel method of running MD
simulations on a restrained theozyme that probes how well the
enzyme stabilizes these transition structures. Finally, MD shows
us what crystallography alone cannot, such as active site

hydration, ligand binding poses, and an average ensemble of
protein conformations, which may include geometrically quite
different states.8

5. SUMMARY AND CONCLUSION
The MD simulations described here show how the shapes of
active sites of various enzymes depend on subtle changes in the
substrate or on mutations remote from the active site. Mutations
of noncatalytic residues have profound effects on a variety of
factors influencing the reactivity, such as the dynamic motions of
catalytic and other active site residues and water penetration.
Understanding and controlling these factors will accelerate the
development of methods to design highly efficient novel
enzymes. Current efforts in this direction are currently ongoing
in our group.

■ AUTHOR INFORMATION
Corresponding Author

*E-mail: houk@chem.ucla.edu.
Notes

The authors declare no competing financial interest.

Biographies
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(1) Kiss, G.; Çelebi-Ölcü̧m, N.; Moretti, R.; Baker, D.; Houk, K. N.
Computational enzyme design. Angew. Chem., Int. Ed. 2013, 52, 5700−
5725.
(2) Tantillo, D. J.; Jiangang, C.; Houk, K. N. Theozymes and
compuzymes: theoretical models for biological catalysis. Curr. Opin.
Chem. Biol. 1998, 2, 743−750.
(3) Richter, F.; Leaver-Fay, A.; Khare, S. D.; Bjelic, S.; Baker, D. De
novo enzyme design using Rosetta3. PLoS One 2011, 6, No. e19230.
(4) Jac̈kel, C.; Kast, P.; Hilvert, D. Protein design by directed evolution.
Annu. Rev. Biophys. 2008, 37, 153−173.
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(10) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker,
R. C. Routine microsecond molecular dynamics simulations with
AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem.
Theory Comput. 2013, 9, 3878−3888.
(11) Shaw, D. E.; Deneroff, M. M.; Dror, R. O.; Kuskin, J. S.; Larson, R.
H.; Salmon, J. K.; Young, C.; Batson, B.; Bowers, K. J.; Chao, J. C.;
Eastwood, M. P.; Gagliardo, J.; Grossman, J. P.; Ho, C. R.; Ierardi, D. J.;
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